Carbon Footprinting and Solar Cooling at the University of Rome «Tor Vergata»

Prof. Stefano Cordiner Energy Manager

4th UNICA Green Academic Footprint Workshop Université Libre de Bruxelles, 27-28 March 2014

Summary

- The use of the Carbon Footprint as a decision tool:
 - the test application
 - some results
 - Proactive actions
- An energy efficient application:
 - the Solar Cooling plant
 - some results

The Campus

- Six schools (Law, Business and Enterprise, Engineering, Humanities, Science, Medicine)
 - 40.000 Students
 - 1.570 Faculties (staff)
 - 1-000 Technician and administration (staff)

The Carbon Footprint report

 Carbon is a footprint measure of the greenhouse gas emissions, in carbon dioxide equivalents, that are directly and indirectly caused by an activity or are accumulated over the life stages of a product/service.

International Standard and Guidance

- The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (1st ed. and revised ed.)
- ISO 14064 part 1 Specific with Guidance at the Organization Level for Quantification and Reporting the Greenhouse Gas Emissions and Removals
- Draft ISO/TR 14069 Carbon Footprint for Organizations

Overview of GHG Protocol scopes and emissions across the value chain

Identifying and Calculating GHG Emissions

Identify Sources

Select Calculation Approach

Collect Data and Choose Emission Factors

Apply Calculation Tools

Roll-up Data at Full Structure Level

Certification

- The CF calculation have been certified by Bureau Veritas Italia S.p.A.
- Bureau Veritas Italia S.p.A. has verified :
 - the completeness, the accuracy and the coerence of the GHG emissions inventory within the defined boundaries
 - the correcteness of the methodology applied to the evaluation of GHG emissions.

Results

Emissioni per ambiti, %

Some preliminary conclusions

- Energy efficiency is paramount
- Transportation is another significant contribution

Transportation

Scenario Attuale

Distribuzione delle residenze e tempi di accesso in auto

Transportation

Scenario Attuale

Ripartizione per modo di trasporto (studenti)

Elaborazione dati a cura di Laboratorio di Progettazione dei Sistemi di Trasporto Dipartimento ingegneria Civile Mobility Manager Università di Roma "Tor Vergata" crisali@ing.uniroma2.t

Some preliminary conclusions

- Energy efficiency is paramount
- Transportation is another significant contribution
- Prioritization is fundamental

The Solar Cooling Application

"PTV" University Polyclinic

- n. 205 vacuum operated solar panels with nominal surface of 4,5 m², for a total of 922,5 m²,
- n. 1 high efficiency single stage absorption cooler with a nominal cooling power of 340 kW, producing chilled water at 7-12°C
- n. 2 evaporative cooling towers;
- n. 2 heat storage tanks for a total of 6.000 l,
- n. 1 boiler for hot water production

A wide surface

Integration

Giorno 10 dicembre 2013

Grafico giornaliero potenza solare / resa impianto

Grafico Temperature collettore solare (sonda TSA) / accumulo solare (sonda TWU)

CO₂ avoided

- Avoided CO2 emissions (203 gCO₂/kWh) 25,5 ton (4 months).
- Energy saved (11.628 kWh/TEP) 10,8 TEP.

Thank you for your attention!

Stefano Cordiner cordiner@uniroma2.it